Evariste Documentation
Release 1.2.1

Louis Paternault

May 06, 2024

Download and install

User documentation
Getting started

Per-file and per-directory configuration files
String formatting

Mandatory plugins
Action plugins
Misc plugins

Logging plugins
Renderer plugins
VCS plugins
Write your own plugin
Plugin paths

evs cache — Cache management
evs plugins — Plugin management
evs compile — Run Evariste
Write your own

Library documentation
evariste.
evariste.
evariste.
evariste.
evariste.
evariste.

CONTENTS

7 Indices and tables
8 Je ne sais pas le reste
Python Module Index

Index

65

67

69

71

Evariste Documentation, Release 1.2.1

Given a git repository (or any directory), Evariste has two purposes:
» compile every file (a la make, with a different configuration);

» generate an HTML page presenting every file (both compiled file and source file), as an
annotated directory tree.

For instance, Evariste turns a git repository of hundreds of LaTeX files into an HTML page with
annotated source and compiled files.

Layout of this documentation

* Installation is explained in the next section (page 5).

The basic concepts of Evariste are explained in Getting started (page 7).

A more thorough user documentation is available in User documentation (page 7).

« Evariste is extensible. Learn about existing plugins, as well as how to write your own
plugins, in Plugins (page 17).

« Evariste comes with a few helpers tools, which are described in evs tools (page 41).
* Developers might want to have a glance at Library documentation (page 43).

Enjoy!

CONTENTS 1

https://framagit.org/lpaternault/cours-2-math
https://lpaternault.frama.io/cours-2-math/
https://lpaternault.frama.io/cours-2-math/

Evariste Documentation, Release 1.2.1

2 CONTENTS

CHAPTER
ONE

USE CASE

1.1 TL;DR

Evariste turns a git repository of hundreds of LaTeX files into an HTML page with annotated
source and compiled files.

1.2 More details, please?

Louis is a math teacher. He has every course material in several git repositories (one per course).
Let’s take a look at this repository.

This repository contain tens or hundreds of LaTeX files (most of them being compiled with
a single pass of Lual.aTeX, some of them require several passes, a few are compiled using
LaTeX+dvipdf), a few LibreOffice documents, and probably a few other files.

Louis has two copies of this repository: one on his computer at home, and one on his USB key
thas is carried at work, and that he uses to print documents on the work printer, and to display
them using a beamer during his lessons. Louis uses git to synchronize those copies.

1.2.1 Purpose #1

At home, Louis has (almost) finished working on some material for his students. He commits
the LaTeX files in his git repository, pushes them to some server, and, on his USB key (the one
he carries at work):

* he pulls the changes (so that this key contains the latest version of the LaTeX source files);

* he runs Evariste (so that the new or recently modified LaTeX source files are compiled to
PDF files that he can print or show to his students).

https://framagit.org/lpaternault/cours-2-math
https://lpaternault.frama.io/cours-2-math/
https://lpaternault.frama.io/cours-2-math/
https://framagit.org/lpaternault
https://framagit.org/lpaternault/cours-2-math
https://ababsurdo.fr/blog/20150615-clef-usb/

Evariste Documentation, Release 1.2.1

1.2.2 Purpose #2

Louis would be happy if other teachers reused his course material, so he publishes his repository
on a public git repository. But this repository only contains source files (and some of Louis’s
colleagues have never heard about LaTeX), and navigating those files is not friendly. So, when
Louis pushes his changes to this public repository, using continuous integration:

o Evariste compiles every single LateX file (at least, those which have changed);

» Evariste generates a HTML page which displays every single file of this repository, to-
gether with its compiled (PDF) version, and, optionnaly, some annotation.

4 Chapter 1. Use case

https://framagit.org/lpaternault/cours-2-math
https://lpaternault.frama.io/cours-2-math

CHAPTER
TWO

DOWNLOAD AND INSTALL

Evariste can be installed using pip:

‘python3 -m pip install evariste

You can build your own Debian (and Ubuntu?) package using stdeb:

python3 setup.py --command-packages=stdeb.command bdist_deb
sudo dpkg -i deb_dist/evariste-<VERSION>_all.deb

https://pip.pypa.io
https://github.com/astraw/stdeb

Evariste Documentation, Release 1.2.1

6 Chapter 2. Download and install

CHAPTER
THREE

USER DOCUMENTATION

3.1 Getting started

You have a directory that you want to be processed using Evariste.

3.1.1 Minimal configuration file

Create a evariste. setup file containing the following text:

[setup]
plugins = vcs.fs

Note that if your directory is a git repository, you can use vcs.git instead of vcs.fs. That
way, only files handled by git will be processed (more information about ves plugins (page 32)
and setup files (page 10)).

That’s it! You can now run evariste on this file:

‘evariste evariste.setup J

And nothing happens. .. You need to give Evariste to pieces of information:
* how files are to be compiled;

* what should be the output.

3.1.2 Compile file
To actually compile files, you need to enable one or several action plugins (page 17) in the
enable_plugin option of the configuration file (see first section).

Let’s use the action.command (page 19) and action.autocommand (page 17) plugins. Our setup
file now looks like this:

Evariste Documentation, Release 1.2.1

[setup]
plugins =
vecs.git
action.command action.autocommand

[action.autocommand.latex]
extensions = tex
targets = {basename}.pdf
command =

latex {basename}

dvipdf {basename}

J

The action.command plugin is not used yet. The action.autocommand is used, and the
action.autocommand.latex means: Every file with extension .tex will be compiled (in its
directory) using command pdflatex {basename} (where {basename} is replaced with the
base name of the file, that is, without directory or extension; more info in String formatting

(page 14)), and will produce a {basename}.pdf file.

Now, that particular foo. tex file must be compiled using lualatex. Let’s use the action.
command plugin, and write a small configuration file for it. This file can be named either foo.
tex.evsconfigor . foo.tex.evsconfig, and contains:

[action]
plugin = command

[action.command]
targets = {basename}.pdf
command = lualatex {basename}

This means:

* for this file, and this file only, the action.command will be used;

* it will be compiled using the lualatex foo command.

Let’s run evariste again, this time with the --verbose option:

evariste evariste.setup --verbose

You can see that your latex files are correctly compiled.

More information, as well as the list of action plugins, can be found in Action plugins (page 17).

Chapter 3. User documentation

Evariste Documentation, Release 1.2.1

3.1.3 Output

Right now, nothing is displayed at the end of the compilation. Let’s improve thit.

Text renderer

Let’s enable the renderer_text plugin (page 31). The [setup] section of your setup file now
looks like this:

[setup]

plugins =
vcs.git
action.command action.autocommand
renderer.text

J

And a tree is displayed at the end of the evariste evariste.setup call: it lists all the files
that were compiled, with their status (success or failed compilation).

HTML renderer

Now you want to publish your directory as an HTML page like this one. To do so, we simply
enable the renderer_html plugin (page 27).

[setup]

plugins =
vcs.git
action.command action.autocommand
renderer.text renderer.html

J

Let’s run evariste evariste.setup again, and voila/, we get a index.html file listing the
files of our repository as a tree, linking to both as source (latex) and compiled (pdf) files.

This plugin can be configured (renderer.html — HTML renderer (page 27)), but you might prefer
the HTMLplus renderer (page 29), which add a bit of CSS and javascript to make the output
nicer.

3.1.4 Conclusion

Evariste is very configurable. There is a lot more to discover: more options (page 10), configure
and ignore files (page 14), several action plugins (page 17) or renderer plugins (page 26), or
more (page 17).

Enjoy!

3.1. Getting started 9

https://lpaternault.frama.io/cours-2-math/

Evariste Documentation, Release 1.2.1

3.2 Usage

Here are the command line options for evariste. Note that:
* other tools are installed together evariste: evs tools (page 41);

* you might be interested in the logging plugins (page 24) to configure output.

Recursively compile files in a directory, and render result.

‘usage: evariste [-h] [--version] [-v] [-q] [-j JOBS] [-B] SETUP

3.2.1 Positional Arguments

SETUP Setup file to process.

3.2.2 Named Arguments

--version Show version
-v, --verbose Verbose. Repeat for more details.
-q, --quiet Quiet. Does not print anything to standard output.

Default: False

-J, --jobs Specity the number of jobs to run simultaneously. Default is one
more than the number of CPUs.

Default: 3
-B, --always-compile Unconditionally make all targets

Default: False

Note that evariste ARGS and evs compile ARGS are the same command.

3.3 Setup file

The setup file contains:
» general configuration about how Evariste should handle this repository;

* configuration that is to be applied to every single file and directory (and that can be over-
loaded later (page 13)).

10 Chapter 3. User documentation

Evariste Documentation, Release 1.2.1

The file is parsed using configparser, you can use any feature of this module.

Itis organized in sections (setup, renderer. text, etc.), each section containing some options.

[setup]
source = .
extends = foo.setup
cachedir = .foo.cache
libdirs =
pluginsl
plugins?2
plugins =
vecs.git
renderer. text
action.autocmd
action.command

[renderer.html.readme.mdwn]
enable = yes

[renderer.text]
ascii = True

[renderer.htmlplus]

enable = yes

destfile = public/index.html
destdir = public

staticdir = public/static

[renderer.htmlplus.templatevar]
title = My awesome title!
lang = fr

3.3.1 [setup] section

The only mandatory section is [setup]. Every other section is optionnal, and depends on which
plugins are enabled. The options are:

+ source: The root of the directory that is to be processed by Evariste, absolute (starting
with / or relative to the directory of the setup file). Default is . (the same directory as the
setup file).

* extends: A list of configuration files. If set, Evariste first loads the first of those files,
then the second (overwriting options that are already defined), then the third, and so on,
and loads this file last. This can be useful if you have: - one setup file that setup up the
compilation of files (that you want to perform on your home computer or USB key); -
another file that is processed by the continuous integration system of your public hosting
software, that extends the first one by adding the generation of an HTML page.

3.3. Setup file 11

https://docs.python.org/3/library/configparser.html#module-configparser

Evariste Documentation, Release 1.2.1

* cachedir: The cache directory, if different from the default one.

* plugins: The list of plugins to enable. Note that plugins can also be enabled individually:
see Enabling plugins (page 12). This list must include exactly one VCS plugin (page 32).

* libdirs: The list of directories the plugins (as python files) are to be searched in: see
Plugin paths (page 40).

3.3.2 Enabling plugins

There are two ways to enable plugins, which can be used at the same time.

* plugins option of the [setup] section:

[setup] }

plugins = foo bar baz

* enable option of the section of each plugin:

[foo] }

enable = true

Evariste includes several plugins; you can also write your own (page 32). Those plugins are
python files, that are searched in plugin directories: see Plugin paths (page 40).

3.3.3 Other sections

Each plugin can define its own sections (or read sections of other plugins). Generally, a plugin
foo will have a corresponding section, and might have other sections [foo.SOMETHING]:

[foo]
bar = baz
[foo.bar]

toto = titi

[foo.baz]
tagada = tsoin tsoin

12 Chapter 3. User documentation

Evariste Documentation, Release 1.2.1

3.4 Per-file and per-directory configuration files

The setup file (page 10) applies to every single file and directory of the source directory. You
might wants more granular settings.

3.4.1 File precedence
The deepest the configuration file, the more precedence it has. For instance, consider a file
foo/bar/baz.odt. The list of setup and configuration files that apply (in that order) are:

* the setup file (page 10);

e .evsconfig;

* foo/.evsconfig;

e foo/bar/.evsconfig;

foo/bar/baz.odt.evsconfig.

Note that if foo/bar/baz.odt.evsconfig is defined, other files are not discarded: they all
are merged together, and if an option is defined in several files, the precedence order defined
above applies.

3.4.2 Per-directory setting

The configuration set up in a . evsconfig file in a directory applies to this directory, and every
file and directory included in it. To make it apply to this directory only, use the recursive
option:

[setup]
recursive = false

3.4.3 Per-file setting

For any file foo.bar, you can define some setting that apply to this file and this file only in
configuration file foo.bar.evsconfigor .foo.bar.evsconfig.

3.4.4 On configuration file names

Configuration files can have arbitrary names. If they contain a source option in the setup
section, then this is considered to be the name (relative to the directory of this configuration
file) that this configuration applies to.

For instance, if file foo/bar/baz.evsignore contains:

3.4. Per-file and per-directory configuration files 13

Evariste Documentation, Release 1.2.1

[setup]
source = ../toto/titi.txt

Then the configuration in this file applies to file foo/bar/../toto/titi.txt, that is foo/
toto/titi.txt.

Using this feature, one can define both a recursive and non-recursive configuration for the same
directory.

3.5 String formatting

In the serup (page 10) and per-file and per-directory configuration (page 13) files, strings related
to path are formatted by replacing part of the string by part of the file name. Using this, one can
define a string which applies to all files (instead of having to rewrite the option for every single
file).

See evariste.tree.Tree. format () (page 58) for the list of replacements.

Note: Implementation detail

Right now, those strings are processed using str. format (), and you might want to use some
of rich features of the Python string formatting. However, this is only an implementation detail,
and might change in the future without notice.

3.6 Source

In the Serup file (page 10), the source option of section [setup] defines the directory that is
to be processed by Evariste.

» Configuration files (page 15)

 Ignore files (page 15)
* READMEs (page 16)

14 Chapter 3. User documentation

https://docs.python.org/3/library/stdtypes.html#str.format

Evariste Documentation, Release 1.2.1

3.6.1 Configuration files

To apply specitif configuration to a single file or directory, or to any subfile and subdirectory of
a given directory, use: Per-file and per-directory configuration files (page 13).

3.6.2 Ignore files

You might want to ignore some files (no compilation (page 17), nor rendering (page 26)). There
are two ways of doing this.

Ignore one file

For any file foo.bar, if a file foo.bar.evsignore or .foo.bar.evsignore exists, then
foo.barisignored. The content of the * . evsignore files here is not read: their mere existence
is sufficient.

Ignore several files

Patterns of file to ignore can be set in .evsignore files in any directory.
* Each line contains a pattern of some files to ignore.
* Empty lines and line starting with # are ignored.

* Lines starting with / match absolute path, while line not starting with / match relative
path. For instance, let us consider the following directory tree.

+ foo
+ bar
+ baz
+ bar

In a file foo/.evsignore, pattern /bar would ignore foo/bar but not foo/baz/bar,
while bar would ignore both foo/bar and foo/baz/bar.

* In patterns:

* matches everything;

7 matches any single character;

[seq] matches any character in seq;

[! seq] matches any character not in seq.

3.6. Source 15

Evariste Documentation, Release 1.2.1

3.6.3 READMEs

Annotation of files is implemented in the H7ML (page 27) and HTMLplus (page 29) plugins.

16 Chapter 3. User documentation

CHAPTER
FOUR

PLUGINS

4.1 Mandatory plugins

The following plugins (page 46) are mandatory: they are enabled by default, and cannot be
disabled. They are necessary for Evariste to run.

MANDATORY_PLUGINS = {
"action.cached",
"action.directory",
"action.noplugin",
"action.raw'",
"changed",
"logging",

"tree",

}

End user do not interact directly with most of them. Otherwise, they are documented elsewhere
in this documentation.

4.2 Action plugins

Action plugins control how files should be compiled.

There is a list of plugins shipped with Evariste, but you can also write your own (page 39).

4.2.1 action.autocommand — Compile file according to mime type
or extension

Like the action.command (page 19) plugin, this plugin is used to define which command should
be used to compile some files. But with this plugin, you can define several rules that will apply
dependinng of the mime type or extension of the file to compile.

17

Evariste Documentation, Release 1.2.1

* Scope (page 18)

* Options (page 18)

» Examples (page 18)

Scope

Commands defined in the serup file (page 10) apply to the whole repository. Commands defined
in the configuration file (page 13) of a directory recursively apply to this directory.

Options

Each rule is defined into its own section [action.autocommand.FO0O].

Common options of action plugins (page 17) and options of action.command (page 19) also
apply here (strace, command, targets). New options are:

* priority (50): If several rules apply to a file, the one with highest priority applies.
* extensions: Space separated list of file extensions this rule should apply to.
* mimetypes: Space separated list of mime types this rule should apply to.

Note that:

* if extensions and mimetypes are both set, the rule applies to files that match either of
them.

e if neither extensions nor mimetypes are set, the end of the section is considered to be
the extension (that is, a section [action.autocommand.ods] with no extensions or
mimetypes option would apply to .ods files).

Examples

* Compile LaTeX files using latex+dvipdif:

[action.autocommand. tex]
targets = {basename}.pdf
command =
latex {basename}
dvipdf {basename}

Note: Shameless self-promotion

If you have several LaTeX files that require different compilation tools, you might be
interested in SpiX, which reads the compilation chain that has been written into the tex
file itself.

18 Chapter 4. Plugins

https://framagit.org/spalax/spix

Evariste Documentation, Release 1.2.1

* Convert OpenDocuments to PDF:

[action.autocommand.opendocument]

mimetypes = application/vnd.oasis.opendocument.*

extensions = fods fodt

command = libreoffice --headless --convert-to pdf {filename}
targets = {basename}.pdf

* Convert Gimp files to png:

[action.autocommand.xcf]
command = echo "\
(define (convert-xcf-to-png filename outfile) \
(let* \
C\
(image (car (gimp-file-load RUN-NONINTERACTIVE.
~filename filename))) \
(drawable (car (gimp-image-merge-visible-layers..
—image CLIP-TO-IMAGE))) \
)\
(file-png-save RUN-NONINTERACTIVE image drawable..
—outfile outfile ® 9 0 0 0 0 0) \
)\
)\
(convert-xcf-to-png \"{filename}\" \"{basename}.png\") \
(gimp-quit 0" | \
gimp -i -b -
targets = {basename}.png

4.2.2 action.command — EXxplicitly set the command to compile a
file

Using this action plugin, one can explicitely set the command used to compile a file.

e Example (page 20)

* Options (page 20)

» Example with action.autocommand (page 17) (page 20)

Note: Althought one can configure this plugin in the serup file (page 10) or in the config-
uration file (page 13) of a directory, so that it applies to every single file of this repository or
directory, you should probably use action.autocommand — Compile file according to mime type
or extension (page 17) for this purpose.

4.2. Action plugins 19

https://www.libreoffice.org/discover/what-is-opendocument/
https://gimp.org

Evariste Documentation, Release 1.2.1

Example
Let’s say file foo. tex has the following configuration file foo.tex.evsconfig.

Listing 1: Example

[action]
plugin = command

[action.command]
targets = {basename}.pdf
command =
latex {basename}
dvipdf {basename}.dvi {basename}.pdf

The plugin option in the [action] section means that this plugin is to be used to compile this
file. Then, in the [action.command] section:

* the targets option gives the name(s) of the compiled file(s);
* the command option defines the shell command to use to compile this file.

Note that strings are formatted (page 14).

Options

Here are the options of this plugin:

e command (""): Command to run.

* strace ("false"): If true, the command is run using strace to automatically find the
dependencies of this file (the other files of this repository that are used to compile this
file). Note that the compilation is slower, and this option is experimental.

* targets (""): Space-separated list of names of the compiled files. See Targets (page 22).

* depends (""): Space-separated list of names of the files that are used to compile this file.
See Depends (page 23).

Example with action.autocommand

Imagine every single file of your repository is to be compiled with pdflatex, excepted for that
file foo. tex that is to be compiled with latex+dvipdf. What you would do is:

* In the setup file (page 10) (or the configuration file (page 13) of the root directory), use
action.autocommand (page 17) to specify that every LaTeX file should be compiled using
pdflatex:

20 Chapter 4. Plugins

https://strace.io/

Evariste Documentation, Release 1.2.1

Listing 2: evariste.setup

[action.autocommand.latex]
extensions = tex

targets = {basename}.pdf
command = pdflatex {basename}

* Inthe configuration file (page 13) of foo.tex (thatis: foo.tex.evsconfig), explicitely
set the command to compile this file:

Listing 3: foo.tex.evsconfig

[action]
plugin = command

[action.command]
command =
latex {basename}
dvipdf {basename}

Since the configuration file for foo.tex has precedence over the other configuration files, or
the setup file itself, this will do the trick.

4.2.3 action.make — Compile file using a Makefile

Compile file using a Makefile.

There is no automatic Makefile detection: you have to explicitely assign this action to a file.
Options

* bin (make): Binary.
e options (""): Options to call make with.

For a given targe foo, the command called is: {bin} {options} foo.

4.2. Action plugins 21

Evariste Documentation, Release 1.2.1

Listing 4: Example

[action.make]
bin = make
options = -j3

4.2.4 action.raw — Do not compile file: use file as-is

The file is not compiled. This is a default plugin (enabled by default, and cannot be disabled).
For any file, if no other action plugin (page 17) matches, then this one is used as last resort.

4.2.5 Which plugin applies to which file?

Automatic selection
Each action plugin (page 49) have a priority (page 47) and a match() (page 47)
method. By default, the plugin used to compile a file is the plugin with the highest priority
that matches the file (i.e. myplugin.match(file) returns True).

Manual selection
However, user can explicitely choose a plugin for a given file, in an evsignore (page 15)
file:

Listing 5: Manual selection of an action plugin

[action]
plugin = foo

[action. foo]
bar = options for plugin foo

4.2.6 Options

Each plugin has its own set of options. However, every action plugin accepts options 7argets
(page 22) and Depends (page 23).

Targets

Evariste cannot guess the name of the files that will be produced by an action. Use this option
to define the targets, i.e. a space separated list of files that are generated by a given action. This
option is formatted (page 14).

In the following example, the command produces two files: a pdf and a png.

22 Chapter 4. Plugins

Evariste Documentation, Release 1.2.1

Listing 6: Example of the targets option.

[action.command]
targets = {basename}.pdf {basename}.png
command =

latex {basename}

convert {basename}.pdf {basename}.png

Depends

The source files of a compiled one should not appear in the output of Evariste. By default, the
file “trigerring” the action is considered the source file, and discarded. But, for instance, if you
compile a fex files that includes a png image, you would like both files to be ignored in the final
output. To do so, depends option is a space separated list of files that the compiled file depends
on, and which should be discarded in the final output.

In the following example, the image . png file will be ignored in the final output.

Listing 7: Example of the depends option.

[action.command]

depends = image.png

targets {basename}.pdf
command pdflatex {basename}

Note that the command plugin (page 19) (and the plugins that inherit from it) accept the exper-
imental, slower strace option (page 20), which automatically detects the files that the compiled
file depends on.

4.3 Misc plugins

Some plugins that do not belong to any other category.

4.3.1 copy — Copy files at the end of compilation

In the copy section of the serup file (page 10), each option starting with copy is a copy instruc-
tion: the first words are source paths, the last one is the destination path. All paths (source and
destination) are relative to the directory of the setup file.

Consider the source path foo and the destination path dest.
* If the source is a file, it is copied into the destination: foo is copied to dest/foo.

* If the source is a directory, its content is copied into the destination: foo/bar is copied
to dest/bar.

Pattern matching is performed to the source files:

4.3. Misc plugins 23

https://docs.python.org/3/library/pathlib.html#pathlib.Path.glob

Evariste Documentation, Release 1.2.1

* ?: asingle character;

» *: everything, excepted directory separators;

**: everything, including directory separators;

* [seq] any characteur in seq.

Listing 8: Example

[copy]
copy_foo = foo* bar baz
copy_toto =

toto

titi*

tata

4.3.2 debug.hooks — Print hook calls

This plugins can help writing new plugins (page 32): it prints to standard output each hook
(page 35), and a few more things.

4.4 Logging plugins

Warning: The logging plugins are not the first ones to be loaded. So other plugins might
have logged things using the Python 1ogging module when those plugins start handling
logs.

Those plugins define how log is displayed. To select a logger (i.e. a plugin logger), use the
configuration file:

24 Chapter 4. Plugins

https://docs.python.org/3/library/logging.html#module-logging

Evariste Documentation, Release 1.2.1

Listing 9: Enable the logging.foo plugin.

[logging]
logger = foo

In the above example, plugin 1logging. foo is used as the logging plugin (if this option is not
set, Logging.auto is used by default).

4.4.1 logging.quiet — Does not log anything

Note that things logged before this plugin is enabled are still logged using the default Python
module.

4.4.2 logging.stdlib — Use the Python logging module

Default logger, that uses the 1logging Python module. The format string can be set in the
configuration file:

Listing 10: Define format string

[logging.stdlib]
format = %%(asctime)s XXX %%(message)s

You can use the attribute names defined by the logging module. Note that you need to escape %
with double %, because configparser formats strings found in configuration files.

4.4.3 logging.auto — Automatic plugin selection

If standard output is a tty, use the logging.rich plugin. Otherwise, log without frills using
the logging.stdlib plugin.

4.4.4 logging.rich — Logging with colors and progress bar

Log stuff using colors and a progress bar (uses the rich module).

4.4. Logging plugins 25

https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/logging.html#logrecord-attributes
https://docs.python.org/3/library/configparser.html#module-configparser
https://rich.readthedocs.io/en/stable/reference/init.html#module-rich

Evariste Documentation, Release 1.2.1

4.5

Renderer plugins

Renderer plugins define what should be done at the end of the compilation: display something
in the standard output (page 31), build an HTML page (page 27), etc. Some plugins are shipped
with Evariste, but you can also write your own (page 40).

4.5.1 renderer.jinja2 — jinja2 renderer

This plugin is an abstract plugin: it cannot be directly used, but several plugins with common
features inherit from it.

This page describes those common features.

Options

Here are the common options to any plugin that is a subclass of this one.

templatedirs: Additionnal directories where templates are being searched. By default,
the following directories are used:

some directory containing the default templates of this plugin;

.evariste/templates (relative to the directory of the serup file (page 10));

~/.config/evariste/templates;

~/.evariste/templates;

/usr/share/evariste/templates.

template: The name of the template used to render the tree.

Template

The following template variables are defined:

destdir: Destination directory.
shared: shared data (see evariste.builder.Builder.shared (page 43)).

local: Local reference to the shared data (see evariste.shared.Shared.
get_plugin_view() (page 56)).

sourcepath: Source path of the repository.

render_file: Function that renders the £ile (page 60) given in argument (this functions
uses the file renderers (page 29)).

render_readme: Function that renders the README of a file (this functions uses the
README renderers (page 29)).

render_template: Function that renders the template given in argument.

26

Chapter 4. Plugins

Evariste Documentation, Release 1.2.1

* templatevar: Dictionary of template variables (see Template variables (page 27)).

* tree: The Root (page 61) being rendered.

Template variables

It can be convenient to define template variables in the serup file (page 10) (the htmliplus
(page 29) plugins uses this). A dictionnary templatevar is available in the template, and
contains the following items:

* date: Compilation date.
* time: Compilation time.
* datetime: Compilation date and time.

» aftertree: A credit line (with the date and Evariste version, and a link to the Evariste
website).

It also contains any option that has been defined in the setup file, in the renderer. {keyword}.

templatevar option (where keyword is the keyword of the plugin).

Listing 11: Example of template variables for the HTML
template

[renderer.html.templatevar]
title = This is the value of the title jinja2 template.
—variable.

4.5.2 renderer.html — HTML renderer

This plugin renders the repository as an HTML tree with annotated files, both as source and
compiled. Note that you might want to use renderer.htmlplus (page 29) instead.

* Options (page 28)

Template (page 28)

Template variables (page 28)

File plugins (page 29)
— renderer.html. file.default — Default file renderer (page 29)

— renderer.html.file.image — Render images (page 29)

Annotation: README plugins (page 29)
— renderer.html.readme.html — HTML README renderer (page 29)

— renderer.html.readme.mdwn — Markdown README renderer (page 29)

4.5. Renderer plugins 27

Evariste Documentation, Release 1.2.1

— renderer.html.readme.rst — Restructuredlext README renderer
(page 29)

Options

Options are defined in section renderer.html of the serup file (page 10). The options of any
Jinja2 plugin (page 26) also apply, and this plugin also defines:

Listing 12: example

[renderer.html]
destfile = index.html
destdir = html

href prefix = html/

e destfile ("index.html") : Destination file.

e destdir ("html") : Destination directory: the source and compiled files will be copied
there (respecting the tree structure of the original repository).

* href_prefix ("") : This string is added at the beginning of each link to the source and
compiled files in the destination file.

* template ("tree.html"): The name of the template used to render the tree. The default
templates is only an HTML list. If you want a full HTML page, see renderer.htmlplus —
HTML renderer, with a bit of CSS and javascript (page 29).

Some template variables can also be defined in the setup file. See Template variables (page 28).

Template

The template variables defined in any Jinja2 renderer are available in any HTML template as
well. See Template (page 26).

Template variables

The templatevar mechanism defined for any Jinja2 renderer are available in any HTML tem-
plate as well. See Template variables (page 27).

28 Chapter 4. Plugins

Evariste Documentation, Release 1.2.1

File plugins
Every single file is not rendererd the same way. You can enable plugins to configure this.
renderer.html.file.default — Default file renderer

This plugin is enabled by default.

renderer.html.file.image — Render images

This plugins displays a thumbnail of the image next to its name.
Annotation: README plugins

README:s can be written in several languages.
renderer.html.readme.html — HTML README renderer

Given a file foo, a foo.html will be pasted raw as its annotation.

renderer.html.readme.mdwn — Markdown README renderer

Given a file foo, a foo.md or foo.mdwn will be rendered as its annotation.

renderer.html.readme.rst — RestructuredText README renderer

Given a file foo, a foo.rst will be rendered as its annotation.

4.5.3 renderer.htmlplus — HTML renderer, with a bit of CSS and
javascript

Like renderer.html — HTML renderer (page 27), this plugin renders the repository as an HTML
tree with annotated files, both as source and compiled. The difference is that it adds a bit of CSS
and javascript to make the end result nicer.

* Options (page 30)

e Template and template variables (page 30)
 File and README plugins (page 31)

4.5. Renderer plugins 29

Evariste Documentation, Release 1.2.1

Options
Options are defined in section renderer.htmlplus of the serup file (page 10).

Listing 13: example

[renderer.htmlplus]
destfile = index.html
destdir = html
href_prefix = html/
display_log = no

The options of renderer.html — HTML renderer (page 27) also apply here. This plugin adds
the following options.

* template ("page.html"): Name of the template to use to render the page. This option
has the same meaning as the one in renderer.html — HTML renderer (page 27), but the
default value is different: by default, it renders a full HTML page (instead of some HTML
code to be includede into an HTML page).

* staticdir ("static"): Directory (relative to the directory of the serup file (page 10)
where static files (CSS and Javascript files) should be copied at the end of compilation.

e display_log ("errors"): Defines what to do with compilation logs. - "yes": In-
clude all logs. This can produce huge HTML pages. - "no": Do not include any log. -
"errors": Only include logs of files when compilation failed.

Some template variables can also be defined in the setup file. See Template variables (page 28).

Template and template variables

The template variables (page 28) defined in the HTML plugin (page 27) are also defined here.
Moreover, the following variables may be defined in the sefup file (page 10) to be included in
the default page.html template:

* lang: Language of the page (to be included in the <html> tag as <html lang={{ lang
1P>).

title: Title of the page (as the title tag).

favicon: Link to the favicon.

head: Additionnal code to be included at the end of the <head> tag.

header: Some HTML code to be included in the body, before the tree.

footer: Some HTML code to be included in the body, after the tree. Default is some
credit to Evariste.

All of them are optional.

30 Chapter 4. Plugins

Evariste Documentation, Release 1.2.1

Listing 14: Example of template variables

[renderer.htmlplus.templatevar]
title = This is the value of the {{title}} jinja2 template variable.

File and README plugins

The README plugins (page 29) and file plugins (page 29) of the HTML renderer (page 27)
also work with this renderer.

4.5.4 renderer.text — Text renderer

At the end of compilation, display (in standard output) a tree to sum up the compilation: which
files were successfully compiled, which were not...

Listing 15: Example

[renderer.text]

enable = true

color = true

display = errors_or_all

Options

The default value is given between parenthesis.

color (auto)
If True, use color to draw the tree. If auto, use color only if standard output is not piped
or redirected.

ascii (False)
If True draw tree structure using only ASCII characters. Otherwise, use a wider set of
characters.

reverse (False)
If True, draw tree in reverse order.

display (all)
Define which files should be displayed at the end of compilation.

all
Display all files.

errors
Only display files when their compilation failed.

4.5. Renderer plugins 31

Evariste Documentation, Release 1.2.1

errors_or_all
If some files did not compile successfully, only display those files. Otherwise, dis-
play all files.

4.6 VCS plugins

Those plugins defines which files should be considered by Evariste.

4.6.1 vcs.fs — Process any file of the file system

Consider every file.

4.6.2 vcs.git — Only process files handled by git

Only consider files handled by git. This prevents writing tedious evsignore (page 15) files to
ignore compiled files, while those are typically ignored by git itself.

4.6.3 vcs.none — Do not process any file

This plugin is used in tests. I do not see why it would be useful to you, but who knows?

4.7 Write your own plugin

4.7.1 Minimum example

A plugin is a subclass of P1ugin (page 46). Define such a class in a python file located in /e
right directory (page 40).

from evariste import plugins

class Foo(plugins.Plugin):
Example plugin"""

mrr

keyword = "foo"

The only mandatory attribute or method is the keyword attribute, which must be unique. It will
be used to enable your plugin in the setup file.

That’s it! You can now enable it in the setup file (page 10):

[setup]
plugins = foo

32 Chapter 4. Plugins

Evariste Documentation, Release 1.2.1

You are now a proud owner of a plugin that does. .. nothing. To interact with Evariste, you can:
* implement some hooks (page 35);

* for some plugin types, implement some methods (see for instance VCS plugins (page 32)
or Action plugins (page 17)).

Of cours, your plugin can do everything listed above, at once.

4.7.2 Attributes

Several useful attributes are defined for every P1ugin (page 46) instance; they are defined in
the class documentation. The most complex one are P1ugin. shared (page 47) and Plugin.
local (page 47).

Plugin.shared

This attribute is a Shared (page 56) instance, shared among every P1ugin (page 46) and Tree
(page 57) object. It has three attributes, which are all DeepDict instances (in the following
examples, shared is an instance of Shared (page 56)):

* setup is a representation of the serup file (page 10). For instance, option bar of section
foo can be read (and set) as shared.setup["foo"]["bar"].

* plugin is a DeepDict where each plugin can store data that is cached, and accessible
from other plugins. Plugin foo can set shared.plugin["foo"] at whatever value it
wants. Technically, you can get and set values for other plugins, but think twice before
doing so: do the other plugin expect you to get and set its data?

* treeis aDeepDict where each plugin can store data about tree instances that is cached,
and accessible from other plugins. Plugin foo can set whatever information its want about
Tree (page 57) instance tree in shared.tree[tree] ["foo"].

Data that is set in Shared (page 56) attributes plugin and tree is pickled so make sure data
you save there are picklable.

Plugin.local

Most of the time, your plugin will only access its own section in the setup file (page 10), or in the
other attributes of the Plugin.shared (page 33) attribute. To make things easier, the very same
data is also available in P1ugin. Iocal (page 47). Let’s consider an instance foo of a plugin
foo

* foo.local.setup is a dictionary of the options of foo in the serup file (page 10): foo.
local.setup is a shortcut for foo.shared.setup["foo"].

e foo.local.plugin is a shortcut for foo.shared.plugin["foo"] (cached data for
this plugin).

* Given a Tree (page 57) object mytree, then foo.local.tree[mytree] is a shortcut
for foo.shared.tree[mytree]["foo"].

4.7. Write your own plugin 33

https://docs.python.org/3/library/pickle.html#module-pickle

Evariste Documentation, Release 1.2.1

Plugin.default_setup and Plugin.global_default_setup

For any plugin, attributes PIlugin.default_setup (page 46) is default setup of the section
Plugin.keyword (page 47), while P1lugin.global_default_setup (page 47) is the whole
default setup (for all sections).

When reading the setup file, options that are not set are filled with options of Plugin.
default_setup (page 46), and sections that are not set are filled with sections of Plugin.
global_default_setup (page 47).

For instance, consider the following plugin:

class Foo(Plugin):
keyword = "foo"
default_setup = {
"fool": "defaultl",
"foo2": "default2",

}
global_default_setup = {

"bar": {
"barl": "globall",
"bar2": "global2",
5

"foo": {
"fool": "globall",
"foo3": "global3",
¥,

}

Now, this plugin is loaded with the following serup file (page 10):

[setup]
plugins = foo

[foo]
foo2 = setup?2
foo4 = setup4

[bar]
barl = setupl
bar3 = setup3

Then, once the setup file, and both Plugin.default_setup (page 46) and Plugin.
global_default_setup (page 47) has been taken into account, the resulting setup is equiva-
lent to:

[setup]
plugins = foo

(continues on next page)

34 Chapter 4. Plugins

Evariste Documentation, Release 1.2.1

(continued from previous page)

[foo]

fool = defaultl
foo2 = setup?
foo4 = setup4d
[bar]

barl = setupl
bar2 = global2
bar3 = setup3

Notice that:
» whatever have been set in the setup file is kept;

* options of Plugin.default_setup (page 46) and Plugin.global_default_setup
(page 47) may be overwritten by the setup file;

* whole sections of Plugin.global_default_setup (page 47) may be overwritten by
the section of Plugin.default_setup (page 46).

4.7.3 Current working directory

Note that as early as possible, the working directory is changed to the directory of the setup file
given in argument to evariste (page 10).

4.7.4 Interacting with Evariste

Hooks

Registering a method of your plugin as a hook means that this method will be called at a partic-
ular point during evariste (page 10) execution.

Hook types
Method hooks

Method hooks are defined as decorator: they return a wrapped function, may (or may not) call
the original function, and may (or may not) change the returned value.

Listing 16: Example of a method hook.

@methodhook ("File.make_archive')
def make_archive(self, function):
"""Do something wile building archive

mrrn

(continues on next page)

4.7. Write your own plugin 35

Evariste Documentation, Release 1.2.1

(continued from previous page)

@functools.wraps(function)

def wrapped(tree, destdir):

Wrapped function."""

Do something before original function call.

Then call the original function.

value = function(tree, destdir)

Do something after the original function call.
Maybe change the returnd value.

return value

mrrn

return wrapped

Context hooks

Most of the time, you want to use a method hook, without the hassle of defining a wrapped
function (because you won’t change the arguments or return value of the original function call).
Any hook defined as a method hook can also be used as a context hook.

Your function must be a context manager (a contextlib.contextmanager () would make it
even easier). Besides self, it is passed the arguments of the original function, and that original
function is called between the __enter__() and __exit__() calls.

Listing 17: Example of a context hook

@contexthook ("Builder.compile™)
@contextlib.contextmanager
def builder_compile(self, builder):

Do something before calling the original function

Call the original function
yield

Do something after having called the original function

Iteration hooks

The last hook type are iteration hooks. Functions registered as such a hook must be iterators,
and Evariste will aggregate all the item iterated by all functions registered as this hook.

Listing 18: Example of an iteration hook

@iterhook("Tree.prune_before")
def foo(self, tree):
yield from self.bar(tree)

36 Chapter 4. Plugins

https://docs.python.org/3/library/contextlib.html#contextlib.contextmanager
https://docs.python.org/3/reference/datamodel.html#object.__enter__
https://docs.python.org/3/reference/datamodel.html#object.__exit__

Evariste Documentation, Release 1.2.1

Chronological list of hooks

Here is the chronological list of hooks, that is, the list of the hooks, in the order in which they
are called when running Evariste.

Just enable the debug.hooks plugin (page 24) to print this list to standard output.

1.
2.

10.

11.

12.

An instance of the plugin is created: plugins.Plugin.__init__Q).

Tree (page 57) (Method hooks (page 35)): for every file and directory in the repository
(page 32), the Method hooks (page 35) Tree is called (__enter__() and __exit__(Q)).

. Builder.compile.__enter__() (page 43) (Method hooks (page 35)): About to build

the tree.

. Tree.prune_before() (Iteration hooks (page 36)): Methods must iterate files that will

be pruned from the tree before file compilation (files and directories that won’t be com-
piled, and won’t appear in the final output). This method is called once for every file and
directory of the tree. Argument: a Tree (page 57) object.

File.compile.__enter__() (page 60) (Method hooks (page 35)): About to compile
the file. This method is called for every file in the repository. Note that file compilation
is done in threads, so you don’t know in which order files will be compiled.

File.compile.__exit__() (page 60) (Method hooks (page 35)): Done compiling the
file. Same remarks as above.

. Tree.prune_after() (lteration hooks (page 36)): Methods must iterate files that will

be pruned from the tree after file compilation (files and directories that may have been
compiled, and won’t appear in the final output). This method is called once for every file
and directory of the tree. Argument: a Tree (page 57) object.

. File.make_archive.__enter__() (page 60) (Method hooks (page 35)): About to

build the archive of the current file and its dependencies (page 23). This hook is called
once for every file in the repository.

File.make_archive.__exit__() (page 60) (Method hooks (page 35)): Done building
the archive.

Builder.compile.__exit__() (page 43) (Method hooks (page 35)): Done building
the tree.

Builder.close.__enter__ () (page 43) (Method hooks (page 35)): About to close the
builder. This method is only called if compilation was successful.

Builder.close.__exit__ () (page 43) (Method hooks (page 35)): About to close the
builder. See remark above.

4.7. Write your own plugin 37

https://docs.python.org/3/reference/datamodel.html#object.__enter__
https://docs.python.org/3/reference/datamodel.html#object.__exit__

Evariste Documentation, Release 1.2.1

Create your own hooks
Method and Context hooks

Defining a new method hook is done using the hooks.setmethodhook () (page 45). The
following example defines a context hook.

Listing 19: Definition of a context hook

from evariste.hooks import setmethodhook
class Foo:
@setmethodhook ()

def bar(self, baz):
bla_bla_bla(Q)

Then, any plugin can register the method or context hook Foo.bar (class name dot method
name, or class name only for the constructor) that will be called whenever method Foo.bar ()
is called.

Any method hook is also a context hook (and it is not possible to define a context hook that is
not a method hook).

Iteration hooks

Iteration hooks are defined using the plugins.Loader.applyiterhook() (page 47) func-
tion (the plugins.Loader (page 47) instance being an attribute of the builder.Builder
(page 43) one).

For instance, if a plugin contains the foolowing lines:

38 Chapter 4. Plugins

Evariste Documentation, Release 1.2.1

Listing 20: Definition of an iteration hook

for item in self.shared.builder.plugins.applyiterhook("foo", bar):
baz(bar)

Then, every method registered as an iteration hook foo will be called with the argument bar,
and whatever they iterate will be iterated in the for loop in this example.

Write action plugins

An action plugin is a subclass of Action (page 49), that must interpret its abstract methods.

Selection

An action plugin has an match() (page 49) method and a priority (page 47) attribute. To
choose which action plugin it should use to compile a foo £i1e (page 60), Evariste looks for the
action plugin with the highest priority, that matches the file (that is: myplugin.match(foo)
returns True). The algorithms looks like the following:

Listing 21: Algorithm to choose the action plugin used to
compile a foo file.

Plugins are sorted by their priority attribute
for plugin in sorted(LIST_OF_ACTION_PLUGINS, reverse=True):
if plugin.match(foo):
return plugin

Threads

The compile () (page 49) action must be thread safe. If not, a Lock is shared by every action
plugin (as attribute Iock (page 49)).

Listing 22: Example of usage of lock (page 49)

def compile(self, path):
Thread safe part
foo()

with self.lock:
Non thread-safe part
bar()

Thread safe part
baz()

4.7. Write your own plugin 39

https://docs.python.org/3/library/abc.html#abc.abstractmethod
https://docs.python.org/3/library/threading.html#threading.Lock

Evariste Documentation, Release 1.2.1

Write renderer plugins

Contrary to action (page 39) and VCS (page 40) plugins, renderer plugins are plain P1lugin
(page 46), that implement interesting stuff at the end of the Builder.compile hook (page 35).

Jinja2 renderer

If you plan to write a renderer that write some file using the jinja2 module, you should probably
subclass jinjaZ2.JinjaZRenderer (page 50).

HTML renderer

The HTMLRenderer (page 53) is a subclass of Jinja2Renderer (page 50) (see above). If you
want it to render files and README differently, you can write a file or README renderer,
which are subclasses of HtmlFileRenderer (page 54) and HtmlReadmeRenderer (page 54).

Write VCS plugins

A VCS plugin is a subclass of VCS (page 55), that must interpret its abstract methods.

Note that it is also possible to write evs plugins (page 42).

4.8 Plugin paths

Evariste looks fro new plugins (as python packages) in the following directories (this is relevant
when writing (page 32) or installing new plugins):

* .evariste/plugins/foo.py (relative to the directory of the setup file);
e ~/.local/evariste/plugins/foo.py
e ~/.evariste/plugins/foo.py

e LIBDIR/foo.py (where LIBDIR is any directory of the /ibdirs (page 40) setup option).

40 Chapter 4. Plugins

https://jinja.palletsprojects.com
https://docs.python.org/3/library/abc.html#abc.abstractmethod

CHAPTER
FIVE

EVS TOOLS

Some helpers tools are installed together with Evariste. They are mostly meant to be used by
developers (of Evariste, or plugins) rather than end users.

* evs cache — Cache management (page 41)
* evs plugins — Plugin management (page 41)

* evs compile — Run Evariste (page 41)

» Write your own (page 42)

5.1 evs cache — Cache management

Using this tool, one can display, explore, or clean cache.

5.2 evs plugins — Plugin management

Using this tool, one can display the list of available plugins.

5.3 evs compile — Run Evariste

The evariste binary is actually a shortcut to this subcommand.

41

Evariste Documentation, Release 1.2.1

5.4 Write your own

If you want to write your own evs tool, simply place an executable file named evs-foo in a
directory of the PATH shell variable. It will be called when calling evs foo, with the same

command line arguments.

42 Chapter 5. evs tools

CHAPTER
SIX

LIBRARY DOCUMENTATION

Modules, classes, functions and constants are documented here.

6.1 evariste.builder

Build process: gather files, and compile them.

class evariste.builder.Builder (serup)
Takes care of build process. Can be used as a context.

shared: evariste.shared.Shared (page 56)

Object that is shared and accessible by every evariste.plugins.Plugin
(page 46) and evariste. tree. Tree (page 57). See Plugin.shared (page 33).

cache: evariste.cache.Cache

Data that is cached between compilations. Plugin developpers won’t manipulate this
attribute directly (see Plugin.shared (page 33)).

plugins: evariste.plugins.Loader (page 47)
Plugin loader: loaded plugins are gathered there.

close()

Perform close operations.
Mainly used as a Method hooks (page 35).

compile()
Compile files handled by this builder.

classmethod from_setupdict (dictionary: Dict[str, Dict[str, str]]) — Builder
(page 43)
Factory that returns a builder, given a setup dictionary.

A setup dictionary is a dict that mimics configparser structure.

classmethod from_setupname (name: str) — Builder (page 43)
Factory that returns a builder, given the name of a setup file (page 10).

43

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/configparser.html#module-configparser
https://docs.python.org/3/library/stdtypes.html#str

Evariste Documentation, Release 1.2.1

6.2 evariste.hooks

Implement hook mechanism.

See Hooks (page 35) for more information.

Note: This implementation of hooks rely on other parts of Evariste (plugins (page 46) for
example), and cannot be used separatedly.

6.2.1 Example

Listing 1: Example of hook mechanism

import contextlib
from evariste import hooks
class A:
@hooks. setmethodhook ()
def a(self):
print ("Running A.a(Q)...")
class B:
@hooks.contexthook("A.a"):

@contextlib.contextmanager
def b(self):

print("Before running A.a()...").

yield

print("After running A.a(Q)...").
Let's go!

A.a(Q

In this example, the A.a () method has been marked as accepting hooks, and the B.b () method
has been registered as a hook for A.a().

When A.a() is run (last line of the example), although B has not been called directly, B.b() is
called as well, as a registered hook. The output of this example is:

Before running A.aQ)...
Running A.a(Q)...
After running A.a(Q)...

44 Chapter 6. Library documentation

Evariste Documentation, Release 1.2.1

6.2.2 Get functions registered as hooks

6.2.3 Method hooks

Methods can be marked to accept hooks using the following function.

evariste.hooks.setmethodhook (*, getter: None | Callable = None) — Callable

Decorator to mark that a method can accept method and context Hooks (page 35).

Parameters
getter (function) — Function that, given the instance object as argu-
ment, returns a plugins.Loader object. If None, the default self.
shared.builder.plugins is used (self is supposed to have this at-
tribute).

6.2.4 Context hooks

Context hooks cannot be directly defined: every method hook is also a context hook.

6.2.5 Iteration hooks

Iteration hooks can be executed using applyiterhook () (page 47).

6.2.6 Register functions as hooks

evariste.hooks.hook (hooktype: str, name: str) — Callable

Decorator to register a function or method as a hook.
Parameters

* hooktype (str) - Type of hook ("methodhook™ or
"contexthook", or whatever string you want).

* name (str) — Name of the target hook, of the form Class.
methodname (or Class only for the __init__ method).

evariste.hooks.contexthook (name: sir) — Callable

Decorator to register a function or method as a context hook.

For any string name, contexthook(name) is a shortcut for hook ("contexthook",
name).

evariste.hooks.methodhook (name: str) — Callable
Decorator to register a function or method as a method hook.

For any string name, methodhook(name) is a shortcut for hook("methodhook",
name).

6.2. evariste.hooks 45

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable

Evariste Documentation, Release 1.2.1

evariste.hooks.iterhook (name: str) — Callable

Decorator to register a function or method as an iter hook.

For any string name, iterhook (name) is a shortcut for hook ("iterhook", name).

6.3 evariste.plugins

Plugin base class and plugin loader

Every plugin is a subclass of P1ugin (page 46) (see Write your own plugin (page 32) for more
information).

The Loader (page 47) class finds and loads the plugins.

6.3.1 Constants

evariste.plugins.MANDATORY_PLUGINS = {'action.cached',
'action.directory', 'action.noplugin', 'action.raw', 'changed',
'logging', 'tree'}

Set of mandatory plugins: plugins that are loaded by default, and cannot be disabled.

6.3.2 Plugin

class evariste.plugins.Plugin(shared)

Plugin base: all imported plugins must be subclasses of this class.
See Write your own plugin (page 32) to see how to write a new plugin.

Parameters
shared (Shared (page 56)) — The object shared (page 33) among plugins.
default_setup: Dict[str, str] = {}

Default value for section self.keyword in the setup file (page 10). It may be over-
written by data provided by user in the setup file (page 10). See Plugin.default setup
and Plugin.global_default_setup (page 34).

depends: Iterator[str] = Q

Iterable of plugins this plugin depends on. When this plugin is enabled, those plu-
gins are enabled as well.

classmethod depends_dynamic(shared) — Iterator[str]

Iterator of plugins this plugin depends on (as an iterator of str)
When this plugin is enabled, those plugins are enabled as well.

Parameters
shared (Shared (page 56)) — Shared object of the current builder.

Warning: called before everything is settled down

46 Chapter 6. Library documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Evariste Documentation, Release 1.2.1

global_default_setup: Dict[str, Dict[str, str]] = {}

Default values for setup file. See Plugin.default_setup and Plu-
gin.global_default_setup (page 34).

keyword: None | str = None

Keyword plugin, used to reference it: it is used to enable plugins in the setup file
(page 12), to name its section in the serup file (page 10), etc.

local

Same as Plugin.shared (page 47), but from this plugin point of view: see
evariste.shared. Shared.get_plugin_view() (page 56) and Plugin.local
(page 33).

match(value, *args, **kwargs) — bool
Return True iff value matches self.

Default is keyword match. This method can be overloaded by subclasses.
plugin_type: str ="'

Type of the plugin. Plugins of the same type gather some common behaviour.
priority: int =0

When Evariste has to choose one plugin among several one, it chooses the one with
higher priority.

shared: Shared (page 56)

Common data shared with every Tree and Plugin (page 46) of this Builder
(page 43).

6.3.3 Loader

class evariste.plugins.Loader (*, shared)
Load plugins

Parameters
shared (evariste.shared. Shared (page 56)) — The shared (page 33)
object among plugins.

The constructor (Loader.__init__Q)):
* reads the serup file (page 10) (looking for the libdirs (page 40) option);
* search all plugins (subclasses of P1ugin (page 46));
* instanciate:
— the mandatory plugins (page 46),
— those enabled in the setup file (page 10),
— and their dependencies;

* store them in some attribute, so that they can be accessed later.

6.3. evariste.plugins 47

https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Evariste Documentation, Release 1.2.1

applyiterhook (hookname: str, *args, **kwargs) — Iterable
Apply an iteration hook (page 36).

Run every fonction hooked to this name (they should be iterators), and iterate over
the chain of those iterators.

Parameters
* hookname (str)— Name of the hook to apply.
* arg (list) — Positional arguments passed to the hooks.
» kwargs (dict)— Named arguments passed to the hooks.

get_plugin(keyword: str) — Plugin (page 46)
Return the plugin with the given keyword.

Raises
NoMatch (page 49) — If no (loaded) plugin was found with this key-
word.

items (plugin_type: str | None = None) — lterable[Tuple[str, Plugin (page 46)]]

Iterate over plugin keywords.

Parameters
plugin_type (Optional [str]) — See Loader.iter() (page 48).

iter(plugin_type: str | None = None) — lterable[Plugin (page 46)]
Iterate over keywords.

Parameters
plugin_type (Optional [str])— Type of the plugins to iterate over.

* if None, iterate over keywords of every (loaded) plugins;
* else, iterate over keywords of plugins of this given type only.

match(plugin_type: str | None, value) — Plugin (page 46)
Return the first plugin matching value.

A plugin Foo matches value if Foo.match(value) returns True.

Parameters
plugin_type (Optional [str])— See Loader.iter() (page 48).

values (plugin_type: str | None = None) — Iterable[Plugin (page 46)]

Iterate over plugins.

Parameters
plugin_type (Optional [str]) — See Loader.iter() (page 48).

48 Chapter 6. Library documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str

Evariste Documentation, Release 1.2.1

6.3.4 Functions

evariste.plugins. find_plugins (libdirs: Iterable[str] | None = None) —
[terator[Plugin (page 46)]

Iterate over available plugins.

Parameters
libdirs (Iterable[str]) — Additional iterable of directories where
plugins can be found.

6.3.5 Exceptions

class evariste.plugins.NoMatch(value, available)
No plugin found matching value.

The P1ugin (page 46) class has a handful of subclasses.

6.3.6 evariste.plugins.action

Actions performed to compile files.

The result of an action (page 49) (Was it sucessful? Which files were used? What is the log?
etc.) is stored as a report (page 50).

If you plan to write your own action plugin, see Write action plugins (page 39).

Action

class evariste.plugins.action.Action(shared)

Generic action
Subclass this to create a new action (see Write action plugins (page 39)).
abstract compile(path: Tree (page 57)) — Report (page 50)
Compile path.
This function must be thread-safe. It can use Action. lock (page 49) if necessary.

lock: threading.Lock = <unlocked _thread.lock object>

A lock shared by every action. Can be used for parts of the compilation which are
not thread-safe.

match(value: Tree (page 57)) — bool
Return True if value can be compiled by this action.
plugin_type: str = 'action'

Type of the plugin. Plugins of the same type gather some common behaviour.

6.3. evariste.plugins 49

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/threading.html#threading.Lock
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Evariste Documentation, Release 1.2.1

Report

class evariste.plugins.action.Report (path, targets=None, success=False,
log=None, depends=None)

Report of an action. Mainly a namespace with very few methods.

property full_depends: Set[Path]
Set of files this action depends on, including self.path.

property success: bool
Was compilation sucessful?

6.3.7 evariste.plugins.renderer

This plugin does not define anything directly, but is interesting because of its submodules.

evariste.plugins.renderer.jinja2

Abstract class for jinja2 renderers.
See also renderer.jinja2 — jinja2 renderer (page 26).

class evariste.plugins.renderer.jinja2.Jinja2Renderer (shared: Shared
(page 56))
Abstract class for jinja2 renderers.

To write your own renderer:
¢ subclass this class;
* define a default template name: JinjaZRenderer. template (page 51);

» write such a template file, and place it in one of the templatedirs (page 26). The
following template variables are defined and can be used in the template: Template

(page 26);
* you can also overwrite the methods defined here.
You might also have a look at the implementation of the HTML renderer (page 53).

* Each file can be rendered in its own way: see Jinja2FileRenderer (page 51) (for
instance, you might want to add a nice thumbnail to files that are images);

* To define how files are annotated, see JinjaZReadmeRenderer (page 52).

default_setup: Dict[str, str] = {'destfile': 'output'}
Default value for section self.keyword in the serup file (page 10). It may be over-
written by data provided by user in the serup file (page 10). See Plugin.default_setup
and Plugin.global_default_setup (page 34).

50 Chapter 6. Library documentation

https://docs.python.org/3/library/typing.html#typing.Set
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Evariste Documentation, Release 1.2.1

get_readme (tree: Tree (page 57)) — Tree (page 57)
Iterate the only README file for tree.

If there is such a README file, iterate over it (a single value); otherwise, iterate
nothing.

Side effect: Store a (partial) function in self.readmes[tree. from_source] to
render this README file.

iter_subplugins (subtype: str) — lterable[Plugin (page 46)]
Iterate over subplugins of type subtype.

This method iterates plugins (as their keywords) {keyword}.{subtype}, where
keyword is the attribute of this class, or its subclasses.

For instance, given that:
* the correct plugins are loaded;

* plugin renderer.html (page 53) is a subclass of renderer.jinja2
(page 50),

call to Jinja2Renderer.iter_subplugins(HtmlRenderer(), "readme™)
will yield: renderer.html.readme, renderer.html.readme.mdwn...

render (builder: Builder (page 43)) — None

Render the tree as a file, and write result into the destination file.

render_tree(tree: Tree (page 57)) — str

Render the tree using templates, and return the string.

template: str = None
Name of the default template.

evariste.plugins.renderer.jinja2.file

Abstract utilities for file renderers using Jinja2.

class evariste.plugins.renderer.jinja2.file.Jinja2FileRenderer (shared)
Renderer of file using jinja2.

This is an abstract class that defines a default renderer for files.
From within a template, the macro render_£file can be called, which:

* looks for the first plugin that matches this file (that is, the first plugin where
Jinja2FileRenderer.match() (page 52) returns True;

e calls Jinja2FileRenderer.render () (page 52), and returns its return value.
To implement such a renderer, you can:
* write a file/default template that defines a £file() macro;

» setthe JinjaZ2FileRenderer.extension (page 52), and writea file/default.
extension template, that defines a file () macro;

6.3. evariste.plugins 51

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://jinja.palletsprojects.com/en/3.0.x/templates/#macros

Evariste Documentation, Release 1.2.1

* overwrite the Jinja2FileRenderer.render () (page 52) method, if the default
implementation does not pleas you.

You can also overwrite Jinja2FileRenderer.match() (page 52), so that your subplu-
gin cannot be applied to any file, but only to some of them.

extension: Optional[str] = None

Extension that is automatically added at the end of the template name when search-
ing them.

keyword: Union[None, str] = None

Keyword plugin, used to reference it: it is used to enable plugins in the setup file
(page 12), to name its section in the serup file (page 10), etc.

match (filename: Tree (page 57)) — bool

This is the default renderer, that matches everything.

priority: int = -inf
When Evariste has to choose one plugin among several one, it chooses the one with
higher priority.

render (filename: Tree (page 57), context: jinja2.runtime.Context) —» str
Render tree, which is a File (page 60)

By default, call the file() macro, with filename as argument, and returns its
value.

template: str = 'default'
Name of the template rendering files.

evariste.plugins.renderer.jinja2.readme

Common utilities for readme renderers using Jinja2.

class evariste.plugins.renderer.jinja2.readme.Jinja2ReadmeRenderer (shared)
Default readme renderer using jinja2.

This is an abstract class that defines a default README renderer for files. From within a
template, the macro render_readme can be called to annotate a file, which:

* looks for the first plugin that matches this file (that is, the first plugin where
Jinja2ReadmeRenderer.match() (page 53) returns True);

e calls JinjaZ2ReadmeRenderer.render() (page 53), and returns its return value.
To implement such a renderer, in a subclass:
¢ do one of:

— set Jinja2ReadmeRenderer.extensions (page 53) as a list of exten-
sions: the README of any file foo is foo. {ext}, the README of any
directory is directory/README. {ext}, where ext is one of the exten-
sions listed here.

52 Chapter 6. Library documentation

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://jinja.palletsprojects.com/en/3.0.x/api/#jinja2.runtime.Context
https://docs.python.org/3/library/stdtypes.html#str
https://jinja.palletsprojects.com/en/latest/templates/#macros
https://docs.python.org/3/library/stdtypes.html#str
https://jinja.palletsprojects.com/en/3.0.x/templates/#macros

Evariste Documentation, Release 1.2.1

— implement JinjaZReadmeRenderer.render () (page 53);

* (optional) implement JinjaZReadmeRenderer.match() (page 53) and
Jinja2ReadmeRenderer.get_readme() (page 53) if the default implemen-
tation does not please you.

extensions: List[str] = []
List of extensions of the READMEs (see Jinja2ReadmeRenderer (page 52)).

get_readme (tree: Tree (page 57)) — Optional[Tree (page 57)]
Return readme file for tree, or None if there is no such README file.

match(tree: Tree (page 57)) — bool
Return True if this plugin can handle the README of the argument.

static render (tree: Tree (page 57)) — str
Render argument as README.

Return a string to be included when rendering the template. The functions and vari-
ables available in the template are described in renderer.jinja2 — jinja2 renderer

(page 26).

evariste.plugins.renderer.html

Render tree as an HTML (body) page.

class evariste.plugins.renderer.html.HTMLRenderer (shared: Shared (page 56))
Render tree as an HTML div (without the <div> tags).

The default template name is tree.html, and such a default template is found in one of
the template directories.

default_setup: Dict[str, str] = {'destfile': 'index.html',
'href_prefix': ''}

Default value for section self.keyword in the setup file (page 10). It may be over-
written by data provided by user in the sefup file (page 10). See Plugin.default_setup
and Plugin.global_default_setup (page 34).

depends: Iterator[str] = ['renderer.html.readme.html',
'renderer.html.file.default']
Iterable of plugins this plugin depends on. When this plugin is enabled, those plu-
gins are enabled as well.
keyword: Union[None, str] = 'renderer.html'
Keyword plugin, used to reference it: it is used to enable plugins in the setup file
(page 12), to name its section in the setup file (page 10), etc.
template: str = '"tree.html'

Default template. This can be overloaded in the setup file. The template is looked
for in any of the remplatedirs (page 26).

6.3. evariste.plugins 53

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Evariste Documentation, Release 1.2.1

evariste.plugins.renderer.html.file

Default HTML file renderer

class evariste.plugins.renderer.html.file.HtmlFileRenderer (shared)
Default HTML file renderer.

This displays the file name together with the file source.
To write another file renderer, you can:
* define a new template (page 52) to use:
 overwrite the default match() (page 52) method;

 overwrite the default render () (page 52) method.

extension: Optional[str] = 'html'
Extension that is automatically added at the end of the template name when search-
ing them.

keyword: Union[None, str] = 'renderer.html.file.default’

Keyword plugin, used to reference it: it is used to enable plugins in the setup file
(page 12), to name its section in the serup file (page 10), etc.

plugin_type: str = 'renderer.html.file'
Type of the plugin. Plugins of the same type gather some common behaviour.

evariste.plugins.renderer.html.readme

Raw README plugin for html renderer.

class evariste.plugins.renderer.html.readme.HtmlReadmeRenderer (shared)

Html renderer for readme files, using jinja2 template engine.
It uses the row content of the html README.

extensions: List[str] = ['"html', 'htm']
List of extensions of the README:s (see Jinja2ReadmeRenderer).

keyword: Union[None, str] = 'renderer.html.readme.html'
Keyword plugin, used to reference it: it is used to enable plugins in the setup file
(page 12), to name its section in the serup file (page 10), etc.

plugin_type: str = 'renderer.html.readme'
Type of the plugin. Plugins of the same type gather some common behaviour.

54 Chapter 6. Library documentation

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Evariste Documentation, Release 1.2.1

6.3.8 evariste.plugins.vcs

evariste.plugins.vcs

Access to VCS (git, etc.) versionned files.
Every path processed here is a pathlib.Path object.

class evariste.plugins.vcs.VCS (shared)

Generic class to access to versionned files.

To write a new VCS plugin, one has to subclass this class, and implement every abstract
method (see for instance the implementation of evariste.plugin.vcs.git.Git).

abstract __contains__(path: Path) — bool
Return True iff path is versionned.

from_repo (path: Path) — Path
Return path, relative to the repository root.

global_default_setup: Dict[str, Dict[str, str]] = {'setup':
{'source': '.'}}
Default values for setup file. See Plugin.default_setup and Plu-
gin.global_default_setup (page 34).

last_modified(path: Path) — datetime

Return the datetime of last modification.

plugin_type: str = 'vcs'

Type of the plugin. Plugins of the same type gather some common behaviour.

property source: Path

Return an absolute version of source setup option.

abstract walk() — Iterable[Path]

Iterate versionned files, descendants of source (as defined by setup file).

abstract property workdir: Path
Return path of the root of the repository.

evariste.plugins.none

Dummy, do-nothing vcs. Used for tests.

class evariste.plugins.vcs.none.NoneVCS (shared)

Dummy vcs: Does not access any file.

__contains__(path: Path) — bool

Return True iff path is versionned.

6.3. evariste.plugins 55

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool

Evariste Documentation, Release 1.2.1

keyword: Union[None, str] = 'vcs.none'

Keyword plugin, used to reference it: it is used to enable plugins in the setup file
(page 12), to name its section in the serup file (page 10), etc.

walk()

Iterate versionned files, descendants of source (as defined by setup file).

property workdir: Path
Return path of the root of the repository.

evariste.plugins.git

Access to git-versionned files.

class evariste.plugins.vcs.git.Git(shared)

Access git-versionned files

__contains__(path: Path) — bool

Return True iff path is versionned.

keyword: Union[None, str] = 'vcs.git'

Keyword plugin, used to reference it: it is used to enable plugins in the setup file
(page 12), to name its section in the setup file (page 10), etc.

last_modified(path: Path) — datetime

Return the datetime of last modification.

walk() — Iterable[Path]

Iterate versionned files, descendants of source (as defined by setup file).

property workdir: Path
Return path of the root of the repository.

6.4 evariste.shared

Share global data between evariste objects.
More information in Plugin.shared (page 33).

class evariste.shared.Shared(builder, **kwargs)
Shared data

get_plugin_view(keyword: str) — _SharedView
Get this data, from the point of view of a plugin.

Let’s define a shared object, and its “plugin view”:

shared = Shared(...)
view = self.get_plugin_view(foo)

56 Chapter 6. Library documentation

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str

Evariste Documentation, Release 1.2.1

Now, when both getting and setting data:
* view.plugin is equivalent to shared.plugin[foo];
* view.tree[bar] is equivalent to shared.tree[bar] [foo];
* view.setup is equivalent to shared.setup[foo].

get_tree_view(path: str) — _SharedView

Get this data, from the point of view of a tree.

Let’s define a shared object, and its “plugin view””:

shared = Shared(...)
view = self.get_tree_view(foo)

Now, when both getting and setting data:

* view.tree[bar] is equivalent to shared. tree[foo] [bar].

6.5 evariste.tree

Directory representation and compilation.

A Tree (page 57) is an abstract class representing a directory structure (a directory with files
and nested directories). Its implementations are:

* File (page 60): a file;
* Directory (page 60): a directory;

* Root (page 61): the root directory being processed.

6.5.1 Tree

class evariste.tree.Tree(path: Path, *, parent: Directory (page 60) | None = None)
A file system tree.

A directory, that contains files and has subdirectories.
Parameters

» path (pathlib.Path) — Relative path (relative to the root of this
tree).

» parent (Optional [Directory (page 60)]) — Directory containing
this file or directory.

basename: pathlib.Path
Name of the tree (path, relative to its Tree.parent (page 59)).

6.5. evariste.tree 57

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/pathlib.html#pathlib.Path

Evariste Documentation, Release 1.2.1

config: Union[utils.DeepDict (page 62), None]

Computed configuration for this file. See Per-file and per-directory configuration
files (page 13). Note: This attribute is None until Tree.set_config() has been
called.

count (dirs: bool = False, files: bool = True) — int

Count the number of files or directories in this tree.

property depth: int
Return the depth of the path.

The root has depth 0, and depth of each path is one more than the depth of its parent.
find (path: str| Path | Tuple[str]) — Tree (page 57) | False

Return the tree object corresponding to path if it exists; False otherwise.
Argument can be:

* astring (str);

* apathlib.Path object;

* atuple of strings, as a list of directories and (optional) final file.

format (string: str) — str
Format given string, with several variables related to self.

Here are the replacements (with example /home/louis/repo/foo/bar.txt):

* {dirname} (/home/louis/repo/foo): the name of the directory. Note that
most of the time, this is useless, since when compiling a file, the working di-
rectory is the directory of this file (i.e. {dirname}).

e {filename} (bar.txt): The file name (without directory).

e {fullname} (/home/louis/repo/foo/bar.txt): The file name (with di-
rectory).

e {extension} (txt): The extension (without the dot). If the file has several
extensions (e.g. foo.tar.gz), this is only the last one gz.

* {basename} (bar): The file name, without directory and extension.

from_fs: pathlib.Path
Absolute path

from_source: pathlib.Path
Path, relative to the Root (page 61).

abstract full_depends() — Iterable[Path]

Iterate over all dependencies of this tree (recursively for directories).
is_dir() — bool

Return True iff self is a directory.

58 Chapter 6. Library documentation

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#bool

Evariste Documentation, Release 1.2.1

is_file() — bool
Return True iff self is a file.

static is_root()
Return True iff self is the root.

local

Same as Tree.shared (page 59), but from a tree point of view: see
get_tree_view() (page 57).

parent: Union[Tree (page 57), None]
Parent directory (copied from constructor argument).

prune (path: Path | str | Tuple[str])
Remove a file.

Argument can be either:

e apathlib.Path,

* atuple,

e or a str (which would be converted to a pathlib.Path.
If called with a non-existing path, does nothing.

property relativename: Path

Return a relative name.
* For root, return path relative to file system (or directory of setup file).
 For non-root, return path relative to parent (i.e. basename of path).

report: Union[plugins.action.Report (page 50), None]
Once the file has been compiled (page 60), the report (compilation log, if any) is
saved here.

property root: Root (page 61)
Return the root of the tree.

shared: Shared (page 56)

Common data shared with every Tree (page 57) and Plugin (page 46) of this
Builder (page 43).

vcs: plugins.vcs.VCS (page 55)
VCS plugin

walk(dirs: bool = False, files: bool = True) — lterable[Tree (page 57)]
Iterator over itself.

. evariste.tree 59

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterable

Evariste Documentation, Release 1.2.1

6.5.2 File

class evariste.tree.File(path: Path, *, parent: Directory (page 60) | None = None)
A file

compile()
Compile file.

depends () — Iterable[Path]
Iterator over dependencies of this file (but not the file itself).

full_depends () — Iterable[Path]

Iterate over all dependencies of this tree (recursively for directories).

last_modified() — datetime
Return the last modified date and time of self.

make_archive (destdir: Path) — Path

Make an archive of self and its dependency.
Steps are:
¢ build the archive;
* copy it to destdir;
* return the path of the archive, relative to destdir.
If self has no dependencies, consider the file as an archive.

It can be called several times: the archive will be built only once.

6.5.3 Directory

class evariste.tree.Directory(*args, **kwargs)
__contains__ (key: str) — bool
Return True if key (a single file name or directory) is in this directory.

__delitem__(item: str)
Remove a subfile or subdirectory.

If, after deletion, self is an empty directory (and is not root), self is remove from
its parent.

__getitem__ (key: str) — Tree (page 57)
Return subfile or subdirectory self. from_£fs / key.

If it does not exist, it is created first.

__iter__(Q — lterable[str]

Iterate over subpaths (this function is not recursive).

60 Chapter 6. Library documentation

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str

Evariste Documentation, Release 1.2.1

add_subpath(sub: List[Path])
Add a path to the tree (relative to self).

compile()
Compile directory.

full_depends () — Iterable[Path]
Iterate over all dependencies of this tree (recursively for directories).

keys() — Iterable[str]
Iterator over subpaths (as str objects).

values () — Iterable[Tree (page 57)]
Iterator over subpaths (as Tree (page 57) objects).

walk(dirs: bool = False, files: bool = True) — Iterable[Tree (page 57)]
Iterator over files or directories of self.

Parameters
e dirs (bool) — If False, do not yield directories.
o files (bool) - If False, do not yield files.

Directories are yielded before subfiles and subdirectories.

6.5.4 Root

class evariste.tree.Root(path, *, ves=None, shared=None)
Root object (directory with no parents).

classmethod from_vcs(repository: VCS (page 55)) — Root (page 61)
Return a directory, fully set.

static is_root() — bool
Return True iff self is the root.

root_compile()
Recursively compile files..

set_config()
Compute the configuration of each file of the tree.

That is:

* look for the file that configure it (typically foo.evsconfig is the configuration
for file foo0),

e Joad it,

 and complete it using the recursive configuration of parent directories.

6.5. evariste.tree 61

https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Evariste Documentation, Release 1.2.1

6.6 evariste.utils

A rag-bag of utility functions that did not fit anywhere else.

class evariste.utils.DeepDict (depth, dictionary=None)

Dictionary of dictionary of ... of dictionaries.

All the dictionaries (expeted the last one) are collections.defaultdict objects.

copy O
Return a copy of self.

fill_blanks (other: dict)
Recursively copy values of other into self.

The values are copied only if those of self are not defined.

classmethod from_configparser (config: ConfigParser) — DeepDict (page 62)

Create a DeepDict (page 62) object from a configparser.ConfigParser object.

get_subkey (subkey)
Return the first sel£[ANY] [subkey], when ANY is any dictionary key.

evariste.utils.smart_open(filename, mode='w', encoding="utf8")

Open filename, standard output, or nothing.
Parameters
e filename (str)—If filename is:

- (the empty string): return a fake file object,
which is empty if file is open for reading, and can be written in
if file is open for writing (but content is then discarded);

- "-" (adash):
read from standard input, or write to standard output (depending
on mode);

— any other: open the given file.
» mode (str)— Same as the mode parameter of open().
* encoding (str) — Same as the encoding parameter of open().

evariste.utils.yesno(arg: bool | str | int | None) — bool
Interpret some (mostly str) variable as a boolean.

>>> yesno("'y")
True

>>> yesno("0")
False

>>> yesno("1")
True

(continues on next page)

62 Chapter 6. Library documentation

https://docs.python.org/3/library/collections.html#collections.defaultdict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/configparser.html#configparser.ConfigParser
https://docs.python.org/3/library/configparser.html#configparser.ConfigParser
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Evariste Documentation, Release 1.2.1

(continued from previous page)
>>> yesno("Yes")
True
>>> yesno("True™)
True
>>> yesno("something senseless")
False
>>> yesno(None)
False

evariste.utils.expand_path(path)

Return path where environment variables and user directory have been expanded.

class evariste.utils.ChangeDir (directory)
Context manager to change and restore current directory.

evariste.utils.cached_iterator (func)
Like functools.cache(), but for iterators.

That is, the first time the function is run, the returned iterable is stored (as a tuple), and
next calls to the function return this tuple.

6.6. evariste.utils 63

https://docs.python.org/3/library/functools.html#functools.cache

Evariste Documentation, Release 1.2.1

64

Chapter 6. Library documentation

CHAPTER
SEVEN

INDICES AND TABLES

* genindex
* modindex

e search

65

Evariste Documentation, Release 1.2.1

66

Chapter 7. Indices and tables

CHAPTER
EIGHT

JE NE SAIS PAS LE RESTE

C’est que malheureusement on ne se doute pas que le livre le plus précieux du
plus savant serait celui ou il dirait tout ce qu’il ne sait pas, c’est qu'on ne se doute
pas qu’un auteur ne nuit jamais tant a ses lecteurs que quand il dissimule une diffi-
culté. Quand la concurrence, c’est-a-dire 1I’égoisme, ne regnera plus dans la science,
quand on s’associera pour étudier, au lieu d’envoyer aux Académies des paquets
cachetés, on s’empressera de publier ses moindres observations pour peu qu’elles
soient nouvelles et on ajoutera : « Je ne sais pas le reste. »

— Evariste Galois, Préface aux « Deux mémoires d’Analyse pure », décembre
1831

67

Evariste Documentation, Release 1.2.1

68

Chapter 8. Je ne sais pas le reste

e

evariste
evariste

54
evariste
54
evariste
evariste
51
evariste
52
evariste
evariste
evariste

evariste.
evariste.
evariste.

.builder,

.hooks, 44
evariste.
evariste.
evariste.
evariste.
evariste.

plugins,
plugins.
plugins.
plugins.
plugins.

.plugins.

.plugins.
.plugins.

.plugins.
.plugins.
.plugins.

.plugins.

tree, 57

utils, 62

43

46
action, 49

renderer, 50
renderer.html, 53
renderer.html. file,

renderer.html.readme,

renderer.jinjaz2, 50
renderer.jinja2.file,

PYTHON MODULE INDEX

renderer.jinja2.readme,

vcs, 55

vcs.git, 56
vcs.none, 55
shared, 56

69

Evariste Documentation, Release 1.2.1

70

Python Module Index

Symbols

__contains__() (evariste.plugins.vcs.VCS
method), 55

__contains__Q)
(evariste.plugins.vcs.git. Git method),
56

__contains__Q
(evariste.plugins.vcs.none.NoneVCS
method), 55

__contains__Q)
method), 60

__delitem__Q
method), 60

__getitem__Q)
method), 60

__iter__0O
method), 60

(evariste.tree.Directory
(evariste.tree.Directory
(evariste.tree.Directory

(evariste.tree.Directory

A

Action (class in evariste.plugins.action), 49

add_subpath() (evariste.tree.Directory
method), 60

applyiterhook() (evariste.plugins.Loader
method), 47

B

basename (evariste.tree.Tree attribute), 57
Builder (class in evariste.builder), 43

C

cache (evariste.builder.Builder attribute), 43

cached_iterator() (in module
evariste.utils), 63

ChangeDir (class in evariste.utils), 63

close() (evariste.builder.Builder method),
43

compile() (evariste.builder. Builder method),
43

INDEX

compile() (evariste.plugins.action.Action
method), 49

compile() (evariste.tree.Directory method),
61

compile() (evariste.tree.File method), 60

config (evariste.tree. Tree attribute), 57

contexthook () (in module evariste.hooks),
45

copy) (evariste.utils.DeepDict method), 62

count () (evariste.tree.Tree method), 58

DeepDict (class in evariste.utils), 62

default_setup (evariste.plugins.Plugin at-
tribute), 46

default_setup

(evariste.plugins.renderer.html. HTMLRenderer

attribute), 53
default_setup

(evariste.plugins.renderer.jinja2.Jinja2Renderer

attribute), 50

depends (evariste.plugins.Plugin attribute),
46

depends (evariste.plugins.renderer.html. HTMLRenderer

attribute), 53
depends () (evariste.tree.File method), 60
depends_dynamic()
(evariste.plugins.Plugin
method), 46
depth (evariste.tree. Tree property), 58
Directory (class in evariste.tree), 60

E

evariste.builder
module, 43

evariste.hooks
module, 44

evariste.plugins

class

71

Evariste Documentation, Release 1.2.1

module, 46
evariste.plugins.action

module, 49
evariste.plugins.renderer

module, 50
evariste.plugins.renderer.html

module, 53
evariste.plugins.renderer.html.file

module, 54

(evariste.utils.DeepDict class
method), 62

from_f£s (evariste.tree. Tree attribute), 58

from_repo() (evariste.plugins.vcs. VCS
method), 55

from_setupdict () (evariste.builder.Builder
class method), 43

from_setupname () (evariste.builder.Builder

class method), 43

evariste.plugins.renderer.html.readmefrom_source (evariste.tree.Tree attribute),

module, 54
evariste.plugins.renderer.jinja2
module, 50

58
from_vcs() (evariste.tree.Root class
method), 61

evariste.plugins.renderer.jinja2.filefull_depends

module, 51

evariste.plugins.renderer.jinja2.readme

module, 52
evariste.plugins.vcs

module, 55
evariste.plugins.vcs.git

module, 56
evariste.plugins.vcs.none

module, 55
evariste.shared

module, 56
evariste.tree

module, 57
evariste.utils

module, 62
expand_path() (in module evariste.utils), 63

extension (evariste.plugins.renderer.html.file. HtmIFileRevalésta:plugins.renderer.jinja2.Jinja2 Renderer

attribute), 54

(evariste.plugins.action.Report

property), 50

full_depends()
method), 61

full_depends () (evariste.tree.File method),
60

full_depends () (evariste.tree. Tree method),
58

(evariste.tree.Directory

G

get_plugin()
method), 48

get_plugin_view()
(evariste.shared.Shared
56

get_readme()

(evariste.plugins.Loader

method),

method), 50

extension (evariste.plugins.renderer.jinja2.file JejaR EakdRehderer

attribute), 52

(evariste.plugins.renderer.jinja2.readme.Jinja2 Readr

extensions (evariste.plugins.renderer.html.readme. HtnitREthle Rénderer

attribute), 54

get_subkey () (evariste.utils.DeepDict

extensions (evariste.plugins.renderer.jinja2.readme.JiljaOR¥bMdMéRenderer

attribute), 53

F

File (class in evariste.tree), 60

fill_blanks() (evariste.utils.DeepDict
method), 62

find () (evariste.tree.Tree method), 58

find_plugins() (in module
evariste.plugins), 49

format () (evariste.tree.Tree method), 58

from_configparser()

get_tree_view()
method), 57

Git (class in evariste.plugins.vcs.git), 56

global_default_setup
(evariste.plugins.Plugin attribute), 47

global_default_setup
(evariste.plugins.vcs.VCS attribute),
55

(evariste.shared.Shared

H

hook () (in module evariste.hooks), 45

72

Index

Evariste Documentation, Release 1.2.1

HtmlFileRenderer (class in
evariste.plugins.renderer.html.file),
54

HtmlReadmeRenderer (class in

evariste.plugins.renderer.html.readme),

54

HTMLRenderer (class in
evariste.plugins.renderer.html),
53

is_dir () (evariste.tree.Tree method), 58

is_file() (evariste.tree. Tree method), 58

is_root () (evariste.tree.Root static method),
61

is_root () (evariste.tree.Tree static method),
59

items() (evariste.plugins.Loader method),
48

iter() (evariste.plugins.Loader method), 48

iter_subplugins()

keyword (evariste.plugins.vcs.git.Git at-
tribute), 56
keyword (evariste.plugins.vcs.none.NoneVCS

attribute), 55

L

last_modified()
(evariste.plugins.vcs.git.Git method),
56

last_modified() (evariste.plugins.vcs.VCS
method), 55

last_modified() (evariste.tree.File

method), 60
Loader (class in evariste.plugins), 47
local (evariste.plugins.Plugin attribute), 47
local (evariste.tree.Tree attribute), 59

lock (evariste.plugins.action.Action
tribute), 49

at-

M

make_archive() (evariste.tree.File method),

(evariste.plugins.renderer.jinja2.Jinja2 Renderer6()

method), 51
iterhook () (in module evariste.hooks), 45

J

Jinja2FileRenderer (class in
evariste.plugins.renderer.jinja2.file),
51

Jinja2ReadmeRenderer (class in

evariste.plugins.renderer.jinja2.readme),

52

Jinja2Renderer (class in
evariste.plugins.renderer.jinja2),
50

K

keys () (evariste.tree.Directory method), 61
keyword (evariste.plugins.Plugin attribute),
47

keyword (evariste.plugins.renderer.html.file. HtmlFilglygpdeses

attribute), 54

keyword (evariste.plugins.renderer. html. HTMLRendgiefri st e

attribute), 53

keyword (evariste.plugins.renderer. html.readme. HmghRgadgreR egvis i s

attribute), 54

keyword (evariste.plugins.renderer.jinja2.file.Jinja2 E{jgReudereplugins

attribute), 52

MANDATORY_PLUGINS
evariste.plugins), 46
match() (evariste.plugins.action.Action
method), 49
match() (evariste.plugins.Loader method),
48
match() (evariste.plugins. Plugin method), 47
match() (evariste.plugins.renderer.jinja2.file.Jinja2 FileRend
method), 52
match() (evariste.plugins.renderer.jinja2.readme.Jinja2 Reac
method), 53
methodhook () (in module evariste.hooks), 45
module
evariste.
evariste.
evariste.

(in module

builder, 43

hooks, 44

plugins, 46
evariste.plugins.action, 49
evariste.plugins.renderer, 50
.plugins.renderer.html,
53
.plugins.renderer.html.file,
54

.renderer.html.readme,
54

.renderer. jinjaz2,

50

Index

73

Evariste Documentation, Release 1.2.1

evariste.plugins.renderer.jinja2. fidmjer_tree()

51 (evariste.plugins.renderer.jinja2.Jinja2Renderer
evariste.plugins.renderer. jinja2.readme, method), 51

52 Report (class in evariste.plugins.action), 50
evariste.plugins.vcs, 55 report (evariste.tree.Tree attribute), 59
evariste.plugins.vcs.git, 56 Root (class in evariste.tree), 61
evariste.plugins.vcs.none, 55 root (evariste.tree.Tree property), 59
evariste.shared, 56 root_compile() (evariste.tree.Root
evariste.tree, 57 method), 61

evariste.utils, 62

S

set_config() (evariste.tree.Root method),

N

NoMatch (class in evariste.plugins), 49 61
NoneVCS (class in evariste.plugins.vcs.none), setmethodhook() (in module
55 evariste.hooks), 45
P Shared (class in evariste.shared), 56
shared (evariste.builder. Builder attribute), 43
parent (evariste.tree.Tree attribute), 59 shared (evariste.plugins.Plugin attribute), 47
Plugin (class in evariste.plugins), 46 shared (evariste.tree.Tree attribute), 59
plugin_type (evariste.plugins.action.Action smart_open() (in module evariste.utils), 62
attribute), 49 source (evariste.plugins.vcs.VCS property),
plugin_type (evariste.plugins.Plugin at- 35
tribute), 47 success (evariste.plugins.action.Report
plugin_type property), 50

(evariste.plugins.renderer.html.file. HtmlFileRenderer
attribute), 54

plugin_type template (evariste.plugins.renderer.html. HTMLRenderer
(evariste.plugins.renderer. html.readme. HrmIReadweBgpse ey

attribute), 54 template (evariste.plugins.renderer.jinja2.file.Jinja2 FileRen
plugin_type (evariste.plugins.ves.VCS at- attribute), 52

tribute), 55 template (evariste.plugins.renderer.jinja2.Jinja2 Renderer
plugins (evariste.builder.Builder attribute), attribute), 51

43 Tree (class in evariste.tree), 57
priority (evariste.plugins.Plugin attribute),

47
priority (evariste.plugins.renderer.jinja2 file. Ryypd EdeRenderiakie. plugins.Loader method),

attribute), 52 48
prune () (evariste.tree.Tree method), 59 values() (evariste.tree.Directory method),

R 61

VCS (class in evariste.plugins.vcs), 55
relativename (evariste.tree.Tree property), vcs (evariste.tree.Tree attribute), 59

59
render () (evariste.plugins.renderer.jinja2. ﬁle.]WaQF ileRenderer

method), 52 walk() (evariste.plugins.vcs.git.Git method),
render () (evariste.plugins.renderer.jinja2.Jinja2 Rendereg

method), 51 walk() (evariste.plugins.vcs.none.NoneVCS
render () (evariste.plugins.renderer.jinja2.readme.JinjagRegsimeRenderer

static method), 53 walk(Q) (evariste.plugins.ves.VCS method), 55

74 Index

Evariste Documentation, Release 1.2.1

walk () (evariste.tree.Directory method), 61

walk () (evariste.tree.Tree method), 59

workdir (evariste.plugins.vcs.git.Git prop-
erty), 56

workdir (evariste.plugins.vcs.none.NoneVCS
property), 56

workdir (evariste.plugins.vcs.VCS property),
55

Y

yesno () (in module evariste.utils), 62

Index

75

	Use case
	TL;DR
	More details, please?
	Purpose #1
	Purpose #2

	Download and install
	User documentation
	Getting started
	Minimal configuration file
	Compile file
	Output
	Text renderer
	HTML renderer

	Conclusion

	Usage
	Positional Arguments
	Named Arguments

	Setup file
	[setup] section
	Enabling plugins
	Other sections

	Per-file and per-directory configuration files
	File precedence
	Per-directory setting
	Per-file setting
	On configuration file names

	String formatting
	Source
	Configuration files
	Ignore files
	Ignore one file
	Ignore several files

	READMEs

	Plugins
	Mandatory plugins
	Action plugins
	action.autocommand — Compile file according to mime type or extension
	Scope
	Options
	Examples

	action.command — Explicitly set the command to compile a file
	Example
	Options
	Example with action.autocommand

	action.make — Compile file using a Makefile
	Options

	action.raw — Do not compile file: use file as-is
	Which plugin applies to which file?
	Options
	Targets
	Depends

	Misc plugins
	copy — Copy files at the end of compilation
	debug.hooks — Print hook calls

	Logging plugins
	logging.quiet — Does not log anything
	logging.stdlib — Use the Python logging module
	logging.auto — Automatic plugin selection
	logging.rich — Logging with colors and progress bar

	Renderer plugins
	renderer.jinja2 — jinja2 renderer
	Options
	Template
	Template variables

	renderer.html — HTML renderer
	Options
	Template
	Template variables
	File plugins
	renderer.html.file.default — Default file renderer
	renderer.html.file.image — Render images

	Annotation: README plugins
	renderer.html.readme.html — HTML README renderer
	renderer.html.readme.mdwn — Markdown README renderer
	renderer.html.readme.rst — RestructuredText README renderer

	renderer.htmlplus — HTML renderer, with a bit of CSS and javascript
	Options
	Template and template variables
	File and README plugins

	renderer.text — Text renderer
	Options

	VCS plugins
	vcs.fs — Process any file of the file system
	vcs.git — Only process files handled by git
	vcs.none — Do not process any file

	Write your own plugin
	Minimum example
	Attributes
	Plugin.shared
	Plugin.local
	Plugin.default_setup and Plugin.global_default_setup

	Current working directory
	Interacting with Évariste
	Hooks
	Hook types
	Method hooks
	Context hooks
	Iteration hooks

	Chronological list of hooks
	Create your own hooks
	Method and Context hooks
	Iteration hooks

	Write action plugins
	Selection
	Threads

	Write renderer plugins
	Jinja2 renderer
	HTML renderer

	Write VCS plugins

	Plugin paths

	evs tools
	evs cache — Cache management
	evs plugins — Plugin management
	evs compile — Run Évariste
	Write your own

	Library documentation
	evariste.builder
	evariste.hooks
	Example
	Get functions registered as hooks
	Method hooks
	Context hooks
	Iteration hooks
	Register functions as hooks

	evariste.plugins
	Constants
	Plugin
	Loader
	Functions
	Exceptions
	evariste.plugins.action
	Action
	Report

	evariste.plugins.renderer
	evariste.plugins.renderer.jinja2
	evariste.plugins.renderer.jinja2.file
	evariste.plugins.renderer.jinja2.readme

	evariste.plugins.renderer.html
	evariste.plugins.renderer.html.file
	evariste.plugins.renderer.html.readme

	evariste.plugins.vcs
	evariste.plugins.vcs
	evariste.plugins.none
	evariste.plugins.git

	evariste.shared
	evariste.tree
	Tree
	File
	Directory
	Root

	evariste.utils

	Indices and tables
	Je ne sais pas le reste
	Python Module Index
	Index

